

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Ultrafin 12

The Norwegian EPD Foundation

Owner of the declaration:

Heidelberg Materials Cement Sverige AB

Product:

Ultrafin 12

Declared unit:

1 tonne

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR

EN 16908:2017 Cement and building lime

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-9810-9788

Registration number:

NEPD-9810-9788

Issue date:

24.04.2025

Valid to:

24.04.2030

EPD software:

LCAno EPD generator ID: 934764

General information

Product

Ultrafin 12

Program operator:

The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-9810-9788

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012 + A2:2019 serves as core PCR EN 16908:2017 Cement and building lime

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 tonne Ultrafin 12

Declared unit with option:

A1-A3, A4

Functional unit:

1 tonne of Ultrafin 12

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Martin Erlandsson, IVL Swedish Res. Inst

(no signature required)

Owner of the declaration:

Heidelberg Materials Cement Sverige AB Contact person: Åsa Nilsson Phone: +46 (0)708-36 15 58 e-mail: asa.nilsson@heidelbergmaterials.com

Manufacturer:

Heidelberg Materials Cement Sverige AB

Place of production:

Heidelberg Materials Cement Sverige AB Marieviksgatan 25, Box 47210 SE-100 74 Stockholm, Sweden

Management system:

ISO 9001:2015 and ISO 14001:2015

Organisation no:

556013-5864

Issue date:

24.04.2025

Valid to:

24.04.2030

Year of study:

2023

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Åsa Nilsson

Reviewer of company-specific input data and EPD: Bodil Wilhelmsson

Approved:

Håkon Hauan, CEO EPD-Norge

Product

Product description:

Ultrafin 12 is a micro cement with excellent penetration characteristics ideal for extremely demanding injections. The clinker is produced in Slite and the final grinding is done at the Degerham plant.

Product specification

Materials	Value	Unit
Clinker	90-100	%
Gypsum	0-5	%
Other	0-5	%

Technical data:

More information at: https://www.cement.heidelbergmaterials.se/sv/ultrafine-12

Market:

Sweden and Europe

Reference service life, product

Depending on the area of use

Reference service life, building or construction works

LCA: Calculation rules

Declared unit:

1 tonne Ultrafin 12

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

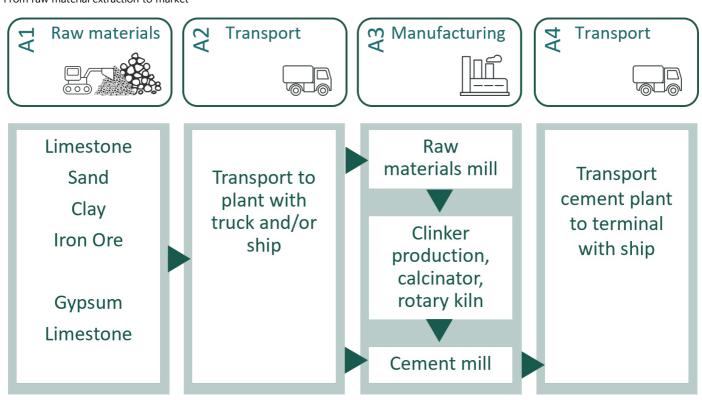
Allocation

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Additives	ecoinvent 3.6	Database	2019
Aggregate	ecoinvent 3.6	Database	2019
Chemical	ecoinvent 3.6	Database	2019
Emissions and waste streams	LCA.no	Database	2024
Limestone	ecoinvent 3.6	Database	2019
Raw materials, Mineral	LCA.no	Database	2024
SCM	LCA.no	Database	2024
Waste products	LCA.no	Database	2024



System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Р	roduct sta	ge		uction ion stage				End of life stage		Beyond the system boundaries						
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Χ	Χ	X	X	MNR	MNR	MNR	MNR	MNR	MNR	MNR	MNR	MNR	MNR	MNR	MNR	MNR

System boundary:

From raw material extraction to market

Additional technical information:

Ultrafin 12 is delivered at the Degerhamn plant gate. The transportation stage, A4, will then be 0 kg CO2-eq.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Environmental impact						
	Indicator	Unit	A1-A3	A4		
	GWP-total	kg CO ₂ -eq	7,33E+02	0		
	GWP-fossil	kg CO ₂ -eq	7,33E+02	0		
	GWP-biogenic	kg CO ₂ -eq	5,14E-02	0		
	GWP-luluc	kg CO ₂ -eq	2,30E-02	0		
٥	ODP	kg CFC11 -eq	1,87E-05	0		
Œ	АР	mol H+ -eq	1,07E+00	0		
	EP-FreshWater	kg P -eq	9,00E-03	0		
	EP-Marine	kg N -eq	2,85E-01	0		
	EP-Terrestial	mol N -eq	2,27E+00	0		
	POCP	kg NMVOC -eq	9,26E-01	0		
	ADP-minerals&metals ¹	kg Sb-eq	3,37E+02	0		
	ADP-fossil ¹	MJ	5,49E+03	0		
<u>%</u>	WDP ¹	m ³	2,89E+05	0		

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

The parameter GWP (A1-A3) includes 93 kg CO2-eq per ton cement, deriving from fossil combustion of secondary (alternative) fuels for the production of cement clinker. In accordance with the "polluter pays" principle /EN 15804/, the emissions will be added to the production system that caused the waste.

However, in this EPD, the CO2 contribution from components of secondary (alternative) fuels has not been deducted.

This is to be able to compare calculated global warming from cement regardless of the status of the waste in different countries. The net GWP-tot is 640 kg CO2-eq.

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Additional environmental impact indicators						
	Indicator	Unit		A4		
	PM	Disease incidence	6,57E-06	0		
(In)	IRP ²	kgBq U235 -eq	1,65E+02	0		
4	ETP-fw ¹	CTUe	1,21E+04	0		
40. *** <u>2</u>	HTP-c ¹	CTUh	6,88E-08	0		
46 E	HTP-nc ¹	CTUh	5,51E-06	0		
	SQP ¹	dimensionless	2,92E+02	0		

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use							
	Indicator	Unit	A1-A3	A4			
i de la companya de l	PERE	MJ	8,99E+02	0			
	PERM	MJ	0,00E+00	0			
in a state of the	PERT	MJ	8,99E+02	0			
	PENRE	MJ	5,39E+03	0			
	PENRM	MJ	9,82E+01	0			
IA	PENRT	MJ	5,49E+03	0			
	SM	kg	8,93E+01	0			
	RSF	MJ	5,29E+01	0			
	NRSF	MJ	1,99E+03	0			
&	FW	m ³	1,68E+00	0			

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste						
	Indicator	Unit	A1-A3	A4		
â	HWD	kg	1,88E-01	0		
Ū	NHWD	kg	9,99E+00	0		
3	RWD	kg	6,44E-02	0		

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flow							
Indicator		Unit	A1-A3	A4			
@ D	CRU	kg	0,00E+00	0			
\$₽	MFR	kg	1,44E-02	0			
DF	MER	kg	3,04E-03	0			
BD	EEE	MJ	2,29E-02	0			
D	EET	MJ	6,43E-02	0			

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content					
Unit	At the factory gate				
kg C	0,00E+00				
kg C	0,00E+00				
	kg C				

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, high voltage, hydro (kWh) - SE	ecoinvent 3.6	4,02	g CO2-eq/kWh
Nuclear electricity (kWh)	ecoinvent 3.6	15,61	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products					
Indicator	Unit	A1-A3	A4		
GWPIOBC	kg CO ₂ -eq	7,27E+02	0		

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no report number: 07.21 Vold et al, (2022) EPD generator for CEN PCR EN 16908:2017 Cement and building lime - Background information for PCR application and LCA data, LCA.no report number: 01.22.

NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge.

CEN PCR EN 16908:2017 Cement and building lime

and norge	Program operator and publisher	Phone:	+47 977 22 020
© epd-norge	The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no
Heidelberg Materials	Owner of the declaration: Heidelberg Materials Cement Sverige AB Marieviksgatan 25, Box 47210, SE-100 74 Stockholm, Sweden	Phone: e-mail: web:	+46 (0)708-36 15 58 asa.nilsson@heidelbergmaterials.com
(LCA)	Author of the Life Cycle Assessment LCA.no AS Dokka 6A, 1671 Kråkerøy, Norway	Phone: e-mail: web:	+47 916 50 916 post@lca.no www.lca.no
(LCA)	Developer of EPD generator LCA.no AS Dokka 6A, 1671 Kråkerøy, Norway	Phone: e-mail: web:	+47 916 50 916 post@lca.no www.lca.no
CEO PLATERIM VER I PIED	ECO Platform ECO Portal	web:	www.eco-platform.org ECO Portal